IPv6 support in the DNS

Gosier, La Guadeloupe
5-9 Mars 2007

Bernard.Tuy@renater.fr
Simon.Muyal@renater.fr
Stig.Venaas@uninett.no

Copy ... Rights

• This slide set is the ownership of the 6DISS project via its partners
• The Powerpoint version of this material may be reused and modified only with written authorization
• Using part of this material must mention 6DISS courtesy
• PDF files are available from www.6diss.org
• Looking for a contact?
 • Mail to : martin.potts@martel-consulting.ch
 • Or bernard.tuy@renater.fr
Contributions

Main authors
- Miguel Baptista, FCCN, Portugal
- Carlos Frías, FCCN, Portugal
- Laurent Toutain, ENST-Bretagne – IRISA, France
- Bernard Tuy, Renater, France

Contributors
- Octávio Medina, ENST-Bretagne, France
- Mohsen Souissi, AFNIC, France
- Vincent Levigneron, AFNIC, France
- Thomas Noel, LSIIT, France
- Alain Durand, Sun Microsystems, USA
- Alain Baudot, France Telecom R&D, France
- Bill Manning, ISI, USA
- David Kessens, Qwest, USA
- Pierre-Emmanuel Goffon, Renater, France
- Jérôme Durand, Renater, France
- Mónica Domingues, FCCN, Portugal

Prerequisites

You should have followed previously the modules:
- IPv6 Introduction
- IPv6 Protocol
- IPv6 Addressing
- IPv6 Associated Protocols
Agenda

- How important is the DNS?
- DNS Resource Lookup
- DNS Extensions for IPv6
- Lookups in an IPv6-aware DNS Tree
- About Required IPv6 Glue in DNS Zones
- The Two Approaches to the DNS
- DNS IPv6-capable software
- IPv6 DNS and root servers
- DNSv6 Operational Requirements & Recommendations

How important is the DNS?

- Getting the IP address of the remote endpoint is necessary for every communication between TCP/IP applications

- Humans are unable to memorize millions of IP addresses (specially IPv6 addresses)

- To a larger extent: the Domain Name System (DNS) provides applications with several types of resources (domain name servers, mail exchangers, reverse lookups, ...) they need

- DNS design
 - hierarchy
 - distribution
 - redundancy
DNS tree

Gosier, La Guadeloupe - March 2007
IPv6 dissemination and exploitation

DNS Lookup

Gosier, La Guadeloupe - March 2007
IPv6 dissemination and exploitation
DNS Extensions for IPv6

RFC 1886 → RFC 3596 (upon successful interoperability tests)

AAAA: forward lookup (‘Name IPv6 → Address’):
Equivalent to ‘A’ record
Example:
ns3.nic.fr.

PTR: reverse lookup (‘IPv6 Address → Name’):
Reverse tree equivalent to in-addrarpa
New tree: ip6.arpa (under deployment)
Former tree: ip6.int (deprecated)

Example:
$ORIGIN 1.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0 192.134.0.49 2001:660:3006:1::1:1

Lookups in an IPv6-aware DNS Tree

IP Address → Name

Name → IP Address
About Required IPv6 Glue in DNS Zones

When the DNS zone is delegated to a DNS server (among others) contained in the zone itself

Example: In zone file rennes.enst-bretagne.fr

```
@ IN SOA rsm.rennes.enst-bretagne.fr. fradin.rennes.enst-bretagne.fr. 2005040201 2005040201 3600 3600 3600000
IN NS rsm
IN NS univers.enst-bretagne.fr.

[...]
ipv6 IN NS rhadamanthe.ipv6
IN NS rs3.nic.fr.
IN NS rsm
:
rhadamanthe.ipv6 IN A 192.108.119.134
IN AAAA 2001:660:7301:1::1
[...]
```

IPv4 glue (A 192.108.119.134) is required to reach rhadamanthe over IPv4 transport
IPv6 glue (AAAA 2001:660:7301:1::1) is required to reach rhadamanthe over IPv6 transport

IPv6 DNS and root servers

- DNS root servers are critical resources!
- 13 roots « around » the world (#10 in the US)
- Not all the 13 servers already have IPv6 enabled and globally reachable via IPv6.
- Need for (mirror) root servers to be installed in other locations (EU, Asia, Africa, ...)
- New technique: anycast DNS server
 - To build a clone from the master/primary server
 - Containing the same information (files)
 - Using the same IP address
- Such anycast servers have already begun to be installed:
 - F root server: Ottawa, Paris (Renater), Hongkong, Lisbon (FCCN)...
 - M root server: Tokyo (WIDE), Paris (Renater), ...
The Two Approaches to the DNS

• The DNS seen as a Database
 – Stores different types of Resource Records (RR): SOA, NS, A, AAAA, MX, SRV, PTR, ...
 => DNS data is independent of the IP version (v4/v6) the DNS server is running on!

• The DNS seen as an IP application
 – The service is accessible in either transport modes (UDP/TCP) and over either IP versions (v4/v6)
 => Information given over both IP versions MUST BE CONSISTENT!

DNS IPv6-capable software

• BIND (Resolver & Server)
 – http://www.isc.org/products/BIND/
 – BIND 9 (avoid older versions)

• On Unix distributions
 – Resolver Library (+ (adapted) BIND)

• NSD (authoritative server only)
 – http://www.nlnetlabs.nl/nsd/

• Microsoft Windows (Resolver & Server)
 ...

...
DNSv6 Operational Requirements & Recommendations

- The target today is NOT the transition from an IPv4-only to an IPv6-only environment

- How to get there?
 - Start by testing DNSv6 on a small network and get your own conclusion that DNSv6 is harmless, but remember:
 - The server (host) must support IPv6
 - And DNS server software must support IPv6
 - Deploy DNSv6 in an incremental way on existing networks
 - DO NOT BREAK something that works fine (production IPv4 DNS)!

Questions?
TLDs and IPv6

- One of IANA’s functions is the DNS top-level delegations
- Changes in TLDs (e.g. ccTLDs) has to be approved and activated by IANA
- Introduction of IPv6-capable nameservers at ccTLDs level has to be made through IANA
TLDs and IPv6 #2

How many servers supporting a domain should carry AAAA records?
- Usually conservative approaches
- One or two servers
- Don’t use long server names.
 - 1024 bytes limit in DNS responses
 - Some ccTLDs had to rename their servers (same philosophy used by root servers)

TLDs and IPv6 #3

- 17/04/2005
 - 4 TLDs (.AEROS, .NET, .COM, .INT)
 - 42 ccTLDs
- European: About half already glued
- Servers: 35 different ones, worldwide