IPv6 associated protocols

Piers O’Hanlon
Contributions

• Main authors
 – Jean-Marc Barozet, Cisco, France
 – Faycal Hadj, Cisco, France
 – Patrick Grossetete, Cisco, France
 – Gunter Van de Velde, Cisco, Belgium
 – Bernard Tuy, Renater, France
 – Laurent Toutain, ENST-Bretagne – IRISA, France

• Contributors
 – Octavio Medina, ENST-Bretagne, France
 – Mohsen Souissi, AFNIC, France
 – Vincent Levigneron, AFNIC, France
 – Thomas Noel, LSIIT, France
 – Alain Durand, Sun Microsystems, USA
 – Alain Baudot, France Telecom R&D, France
 – Bill Manning, ISI, USA
 – David Kessens, Qwest, USA
 – Pierre-Emmanuel Goiffon, Renater, France
 – Jérôme Durand, Renater, France
 – Ben McCarthy, Dr Chris Edwards, Lancaster, UK
New Protocols

- New features specified in IPv6 Protocol (RFC 2460 DS)
- Neighbor Discovery (ND) (RFC 2461 DS)
- Auto-configuration:
 - Stateless Address Auto-configuration (RFC 2462 DS)
 - DHCPv6: Dynamic Host Configuration Protocol for IPv6
 - Path MTU discovery (pMTU) (RFC 1981 PS)
- Mobility
 - Mobile IPv6
 - Network Mobility - NEMO
- Sensor Networks
 - 6LOWPAN
New Protocols (2)

- Multicast Listener Discovery (MLD) RFC 2710
 - Multicast group management over an IPv6 link
 - Based on IGMPv2
 - MLDv2 (equivalent to IGMPv3 in IPv4)
- ICMPv6 (RFC 2463 DS) "Super" Protocol that:
 - Covers ICMP (v4) features (Error control, Administration, …)
 - Transports ND messages
 - Transports MLD messages (Queries, Reports, …)
Neighbor Discovery

- IPv6 nodes which share the same physical medium (link) use Neighbor Discovery (ND) to:
 - discover their mutual presence
 - determine link-layer addresses of their neighbors
 - find routers (see autoconfiguration session)
 - maintain neighbors’ reachability information (NUD)
 - not directly applicable to NBMA (Non Broadcast Multi Access) networks
ND uses multicast for certain services.
Neighbor Discovery (2)

• Protocol features:
 – Router discovery
 – Prefix(es) discovery
 – Parameters discovery (link MTU, Max Hop Limit, ...)
 – Address auto-configuration
 – Link-layer Address resolution
 – Next Hop determination
 – Neighbor Unreachability Detection
 – Duplicate Address Detection
 – Redirect
Neighbor Discovery (3): Comparison with IPv4

• It is the synthesis of:
 – ARP
 – ICMP Router Discovery Messages
 RFC1256
 – ICMP redirect
 – ...

Ashgabat, Turkmenistan – April 2007
Neighbor Discovery (4)

- ND specifies 5 types of ICMP packets:
 - Router Advertisement (RA):
 - periodic advertisement (of the availability of a router) which contains:
 » list of prefixes used on the link (autoconf)
 » a possible value for Max Hop Limit (TTL of IPv4)
 » value of MTU
 - Router Solicitation (RS):
 - the host needs RA immediately (at boot time)
Neighbor Discovery (5)

- Neighbor Solicitation (NS):
 - to determine the link-layer address of a neighbor
 - or to check its reachability
 - also used to detect duplicate addresses (DAD)

- Neighbor Advertisement (NA):
 - answer to a NS packet
 - to advertise the change of physical address

- Redirect:
 - Used by a router to inform a host of a better route to a given destination
Link-layer Address Resolution

• Find the mapping:
 – Dst IP addr ➔ Link-Layer (MAC) addr

• Recalling IPv4 & ARP
 – ARP Request is broadcast
 • e.g. ethernet addr : FF-FF-FF-FF-FF-FF
 • Containing the Src’s LL addr
 – ARP Reply is sent in unicast to the Src
 • Containing the Dst’s LL addr
At boot time, every IPv6 node has to join 2 special multicast groups for each network interface:

- All-nodes multicast group: \texttt{ff02:0:1}
- Solicited-node multicast group: \texttt{ff02:1:ffxx:xxxx} (derived from the lower 24 bits of the node’s address)

Address Resolution (2)

IPv6 with Neighbor Discovery

<table>
<thead>
<tr>
<th>NS</th>
<th>(\text{D}_{IP} = \text{Multi}(\text{IP}2))</th>
<th>(\text{D}_{LL} = (\text{MAC}2))</th>
<th>(S_{IP} = \text{IP}1)</th>
<th>(S_{LL} = \text{MAC}1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>(\text{D}_{IP} = \text{IP}1)</td>
<td>(\text{D}_{LL} = \text{MAC}1)</td>
<td>(S_{IP} = \text{IP}2)</td>
<td>(S_{LL} = \text{MAC}2)</td>
</tr>
</tbody>
</table>
Address Resolution (3)
Solicited Multicast Address

- **Concatenation** of the prefix FF02: : 1: FF00: 0/ 104 with the last 24 bits of the IPv6 address

 Example:

 ↓

 - **Sol. Mcast @:** FF02: 0000: 0000: 0000: 0000: 0001: FF24: 87c1

 ↓

 - **Ethernet:** 33- 33- FF- 24- 87- c1
Path MTU discovery (RFC 1981)

- Derived from RFC 1191, (IPv4 version of the protocol)
- **Path**: set of links followed by an IPv6 packet between source and destination
- **Link MTU**: maximum packet length (bytes) that can be transmitted on a given link without fragmentation
- **Path MTU** (or pMTU) = min \{ link MTUs \} for a given path
- Path MTU Discovery = automatic pMTU discovery for a given path
Path MTU discovery (2)

• Protocol operation
 – makes assumption that pMTU = link MTU to reach a neighbor (first hop)
 – if there is an intermediate router such that link MTU < pMTU \(\Rightarrow \) it sends an ICMPv6 message: "Packet size Too Large"
 – source reduces pMTU by using information found in the ICMPv6 message

=> Intermediate network element aren’t allowed to perform packet fragmentation
Mobility Overview

- **Mobility** is much wider than “nomadism”
- Keep the same IP address regardless of the network the equipment is connected to:
 - reachability
 - configuration
 - real mobility
- Difficult to optimize with IPv4 (RFC 3344 PS)
- Use new facility of IPv6: MIPv6
IPv6 Mobility (MIPv6)

- IPv6 mobility relies on:
 - New IPv6 features
 - The opportunity to deploy a new version of IP
- Goals:
 - Offer the direct communication (route optimisation) between the mobile node and its correspondents
 - As opposed to triangle routing
 - Reduce the number of actors (Foreign Agent (IPv4) no longer used)
- MIPv6: RFC 3776
General Considerations

- A globally unique IPv6 address is assigned to every Mobile Node (MN): Home Address (HA)
- This address enables the MN identification by its Correspondent Nodes (CN)
- A MN must be able to communicate with non-mobile nodes
- Communications (layer 4 connections) have to be maintained while the MN is moving and connecting to foreign (visited) networks
Mobile IPv6: Key Components

HA, Home Agent
Maintains an Association Between the MN’s “Home” IP Address and Its Care of Address (Loaned Address) on the Foreign Network

MN, Mobile Node
An IP Host that Maintains Network Connectivity Using Its “Home” IP Address, Regardless of which Link (or Network) It Is Connected to

CN, Correspondent Node
Destination IP Host in Session with a Mobile Node
Main features/requirements of MIPv6

- **CN** can:
 - Put/get a Binding Update (BU) in/from their Binding Cache
 - Learn the position of a mobile node by processing BU options
 - Perform direct packet routing toward the MN using Routing Header
- **The MN’s Home Agent must**:
 - Be a router in the MN’s home network
 - Intercept packets which arrive at the MN’s home network and whose destination address is its HA
 - Tunnel (IPv6 encapsulation) those packets directly to the MN
 - Do reverse tunneling (MN → CN)
Mobile Node Addressing

- A MN is always reachable on its Home Address
- While connecting to foreign networks, a MN always obtains a temporary address, “the Care-of Address” (CoA) by auto-configuration:
 - It receives Router Advertisements providing it with the prefix(es) of the visited network
 - It appends that (those) prefix(es) to its Interface-ID
- Movement detection is also performed by Neighbor Discovery mechanisms
MIPv6: IETF Model

Internet

Home Link

Home Agent

Mobile Node

Correspondent Node

Data

BU
Network Mobility

• Until now all we have considered is host mobility
 – I.e. Managing the mobility of Individual devices
• However, many scenarios exist where entire networks of mobile devices move together
 – Access networks on trains, buses or planes
 – Personal Area Networks
 – Network of In-car devices
Network Mobility Advantages

- Consider Train-Based Access network
 - If 100’s of MIPv6 devices on train
 - When the train roams, all devices must update their respective HAs (A lot of control traffic sent at once)
 - With Network Mobility, a Mobile Router (MR) manages the mobility of all the devices
NEMO Basic Support Protocol

• IETF’s Solution to supporting Network Mobility
 – MIPv6 Extension (NEMO BS is now RFC3963)
 – HA intercepts packets for an entire IPv6 network prefix
 • i.e. 2001:630:80:10::/64
 – MR maintains Bi-directional tunnel, forwarding packets to Nodes on its Mobile Network
 – Nodes needn’t be aware of their mobility
 • COTS devices need no new code
Nested Mobile Networks

- NEMO BS introduces new scenarios (and therefore problems) not possible with MIPv6
 - Nested Mobile Networks (Nested NEMO)
- What happens if a NEMO-enabled PAN attaches to a NEMO-enabled train network?
 - Devices connected to the PAN are 2 levels deep in the Nested NEMO
 - Multiple HAs to visit
 - Produces Pinball Routing (AKA Multi-Angular Routing)
 - Latency & header size increases with every level of nesting
- Nested NEMO can be many levels deep (1 - 36)
Nested NEMO

Ashgabat, Turkmenistan – April 2007
Route Optimisation

• MIPv6-Style RO cannot be applied to NEMO
 – In NEMO, Nodes behind the MR are unaware they are connected to a Mobile Network
 – Many Nodes behind the MR will be communicating with many different CNs
• MR could record packet transfers and perform RO on behalf of Nodes on the Mobile Network
 – But this solution would be unacceptable!
 • Large amount of state held in the MR
 • When MR roams: Influx of protocol data & big increase in processing
• Still wouldn’t optimise route in Nested NEMO

Ashgabat, Turkmenistan – April 2007
6LOWPAN

• LOWPAN: Low-power wireless personal area network
 – Devices with short range, low bit rate, low power and low cost
 • E.g. Sensor networks
 – Specifically IEEE 802.15.4-2003

• 6LOWPAN: Transport of IPv6 packets in LOWPANs
 – IETF: Transmission of IPv6 Packets over IEEE 802.15.4 Networks (draft-ietf-6lowpan-format-13)
IPv6 transport

• IPv6 standard specifies minimum MTU of 1280 bytes
 – However LOWPANs have MTU of max 127
 • Available space of only 81 bytes
• Need to fit IPv6 packets on to LOWPAN
 – Need to specify representation
 – Typically need to compress headers
 • IPv6 Header 40 Bytes
 – Require link layer fragmentation as MTU is below 1280
 • Though not always as packets are usually small
IPv6 packets on LOWPAN

• LOWPAN transmission
 – IEEE 802.15.4 has 4 types of frames
 • beacon frames, MAC command frames, acknowledgement frames and data frames
 – IEEE 802.15.4 defines several addressing modes
 • IEEE 64-bit extended addresses or (after an association event) 16-bit addresses unique within the PA
 • Mesh routing
• IPv6 packets are carried in data frames using all above addressing modes
 – Multicast is only available in mesh networks
LOWPAN Adaptation Layer and Frame Format

- Uses an “Dispatch header”, which prefixes the IPv6 header.
 - Indicating compression, if used.
 - Additionally there maybe extra headers for fragmentation, mesh transport
Questions?