Copy …Rights

• This slide set is the ownership of the 6DISS project via its partners

• The Powerpoint version of this material may be reused and modified only with written authorization

• Using part of this material must mention 6DISS courtesy

• PDF files are available from www.6diss.org

• Looking for a contact?
 – Mail to: martin.potts@martel-consulting.ch
 – Or bernard.tuy@renater.fr
Acknowledgements

• János Mohácsi, NIIF/HUNGARNET - Hungary
• Octavio Medina, Octavio Medina, Laurent Toutain, ENST
• Bernard Tuy, Jérôme Durand, Emmanuel Goiffon, Renater
• Peter Kirstein, Steve Hailes, Piers O’Hanlon, UCL
• Wolfgang Fritsche, IABG
• Jim Bound, Hewlett Packard
• Patrick Grostete, Cisco
• Mohsen Souissi, AFNIC
• Alain Durand, Sun Microsystems
• Bill Manning, ISI
• Alain Baudot, France Telecom R&D
• Pedro Lorga, FCCN
• And many others
What is new with IPv6?

• Security was considered from the start in IPv6
 – One can rely on certain features existing
 – When new services were considered, their security was part of IPv6 thinking

• Some of the key improvements:
 – IPsec useable with the core protocols
 – Cryptographically Generated Addresses (CGA)
 – SEcure Neighbor Discovery (SEND)
 – Making intrusion harder
Threats to be encountered in IPv6

- Scanning Gateways and Hosts for weakness
- Scanning for Multicast Addresses
- Unauthorised Access Control
- Firewalls
- Protocol Weaknesses
- Distributed Denial of Service
- Transition Mechanisms
- Worms/Viruses
 - There are already worms that use IPv6 (Rbot.DUD,
Scanning Gateways and Hosts

• Subnet Size is much larger
 – Default subnets in IPv6 have 2^{64} addresses (approx. 18×10^{18}).
 – Exhaustive scan on every address on a subnet is no longer reasonable (if 1,000,000 address per second then > 500,000 year to scan)

• IPv6 Scanning methods are likely to change
 – Public servers will still need to be DNS reachable giving attacker some hosts to attack – this is not new!
 – Administrators may adopt easy to remember addresses (::1, ::2, ::53, or simply IPv4 last octet)
 – EUI-64 address has “fixed part”
 – Ethernet card vendors guess
 – New techniques to harvest addresses – e.g. from DNS zones, logs
 • Deny DNS zone transfer
 – By compromising routers at key transit points in a network, an attacker can learn new addresses to scan
Scanning Multicast Addresses

- New (IPv6) multicast addresses - IPv6 supports multicast addresses that can enable an attacker to identify key resources on a network and attack them
 - For example, and all DHCP servers (FF05::5)
 - All-node/all-router multicast addresses are in IPv4 (2240.0.1,2) already
 - Though these can provide for new DoS opportunities
 - Addresses must be filtered at the border in order to make them unreachable from the outside
 - IPv6 specs forbids the generation of ICMPv6 packets in response to messages to global multicast addresses that certain requests
Security of IPv6 addresses

- Cryptographically Generated Addresses (CGA) IPv6 addresses [RFC3972]
 - Host-ID part of address is carry hashed information about public key
 - Binds IPv6 address to public key without requiring a key management infrastructure
 - Used for securing Neighbor Discovery [RFC3971]
 - Is being extended for other uses [RFC4581]

- Private addresses as defined [RFC 3041]
 - Prevents device/user tracking from
 - Makes accountability harder

- Host-ID could be a token to access to a network
Autoconfiguration / Neighbor Discovery

- Neighbor Discovery (cf Address Resolution Protocol)
 - Can suffer similar problems of ARP cache poisoning
- Better solution with SEcure Neighbor Discovery (SEND) [RFC3971]
 - Uses CGA
 - Linux implementation: DoCoMo’s Open Source SEND Project
- DHCPv6 with authentication is possible
- ND with IPSec also possible
Unauthorised Access Control

- Policy implementation in IPv6 with Layer 3 and Layer 4 is still done in firewalls
- Some design considerations!
 - Filter site-scoped multicast addresses at site boundaries
 - Filter IPv4 mapped IPv6 addresses on the wire

<table>
<thead>
<tr>
<th>Action</th>
<th>Src</th>
<th>Dst</th>
<th>Src port</th>
<th>Dst port</th>
</tr>
</thead>
<tbody>
<tr>
<td>permit</td>
<td>a:b:c:d::e</td>
<td>x:y:z:w:v</td>
<td>any</td>
<td>ssh</td>
</tr>
<tr>
<td>deny</td>
<td>any</td>
<td>any</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unauthorised Access control

- Non-routable + bogon (unallocated) address filtering slightly different
 - in IPv4 easier deny non-routable + bogons
 - in IPv6 simpler to permit legitimate (almost)

<table>
<thead>
<tr>
<th>Action</th>
<th>Src</th>
<th>Dst</th>
<th>Src port</th>
<th>Dst port</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny</td>
<td>2001:db8::/32</td>
<td>host/net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>permit</td>
<td>2001::/16</td>
<td>host/net</td>
<td>any</td>
<td>service</td>
</tr>
<tr>
<td>permit</td>
<td>2002::/16</td>
<td>host/net</td>
<td>any</td>
<td>service</td>
</tr>
<tr>
<td>permit</td>
<td>2003::/16</td>
<td>host/net</td>
<td>any</td>
<td>service</td>
</tr>
<tr>
<td>Deny</td>
<td>3ffe::/16</td>
<td>host/net</td>
<td>any</td>
<td>service</td>
</tr>
<tr>
<td>deny</td>
<td>any</td>
<td>any</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
L3- L4 Spoofing

• While L4 spoofing remains the same, IPv6 address are globally aggregated making spoof mitigation at aggregation points easy to deploy

• Can be done easier since IPv6 address is hierarchical

• However host part of the address is not protected
 – You need IPv6 <-- >MAC address (user) mapping for accountability!
Amplification (DDoS) Attacks

• There are no broadcast addresses in IPv6
 – This would stop any type of amplification attacks that send ICMP packets to the broadcast address
 – Global multicast addresses for special groups of devices, e.g. link-local addresses, etc.

• IPv6 specifications forbid the generation of ICMPv6 packets in response to messages to global multicast addresses
 – Many popular operating systems follow the specification
 – Still uncertain on the danger of ICMP packets with global multicast source addresses
Mitigation of IPv6 amplification

- Be sure that your host implementations follow the ICMPv6 specification [RFC 4443]
- Implement Ingress Filtering
 - Defeating Denial of Service Attacks which employ IP Source Address Spoofing [RFC 2827]
- Implement ingress filtering of IPv6 packets with IPv6 multicast source address
Mixed IPv4/IPv6 environments

- There are security issues with the transition mechanisms
 - Tunnels are extensively used to interconnect networks over areas supporting the “wrong” version of protocol
 - Tunnel traffic many times has not been anticipated by the security policies. It may pass through firewall systems due to their inability check two protocols in the same time

- Do not operate completely automated tunnels
 - Avoid “translation” mechanisms between IPv4 and IPv6, use dual stack instead
 - Only authorized systems should be allowed as tunnel end-points
IPv6 transition mechanisms

• ~15 methods possible in combination
• Dual stack:
 – enable the same security for both protocol
• Tunnels:
 – ip tunnel – punching the firewall (protocol 41)
 – gre tunnel – probable more acceptable since used several times before IPv6
L3 – L4 Spoofing in IPv4 with 6to4

- For example, via 6to4 tunnelling spoofed traffic can be injected from IPv4 into IPv6.
 - IPv4 Src: Spoofed IPv4 Address
 - IPv6 Src: 2002::: Spoofed Source
Other threats

- IPv6 Routing Attack
 - Use traditional authentication mechanisms for BGP and IS-IS.
 - Use IPsec to secure protocols such as OSPFv3 and RIPng
- Viruses and Worms
- Sniffing
 - Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4
- TCP ICMP attacks – slight differences with ICMPv6
- Application Layer Attacks
 - Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent
- Man-in-the-Middle Attacks (MITM)
 - Without IPsec, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Flooding
 - Flooding attacks are identical between IPv4 and IPv6
Vulnerability testing/assessment

- Testing tools
 - Ettercap, nmap, LSOF, Snoop, DIG, Etherape, Wireshark, Fping, Ntop, SendIP, TCPDump, WinDump, IP6Sic, NetCat6, Ngrep, THC Amap

- Assessment tools
 - SAINT, nessus, ndpmon,
Firewalls

- **IPv6 architecture and firewall - requirements**
 - No need to NAT – same level of security with IPv6 possible as with IPv4 (security and privacy)
 - Even better: e2e security with IPSec
 - Weaknesses of the packet filtering cannot be hidden by NAT
 - IPv6 does not require end-to-end connectivity, but provides end-to-end addressability
 - Support for IPv4/IPv6 transition and coexistence
 - Support for IPv6 header chaining
 - Not breaking IPv4 security

- **There are some IPv6-capable firewalls now**
 - Cisco ACL/PIX, iptables, ipfw, Juniper NetScreen
IPv6 firewall setup - method 1

- Internet ↔ router ↔ firewall ↔ net architecture
- Requirements:
 - Firewall must support/recognise ND/NA filtering
 - Firewall must support RS/RA if Stateless Address Auto-Configuration (SLAAC) is used
 - Firewall must support MLD messages if multicast is required
IPv6 firewall setup - method 2

- Internet ↔ firewall ↔ router ↔ net architecture
- Requirements:
 - Firewall must support ND/NA
 - Firewall should support filtering dynamic routing protocol
 - Firewall should have large variety of interface types
IPv6 firewall setup - method 3

- Internet ↔ firewall/router (edge device) ↔ net architecture
- Requirements
 - Can be powerful - one point for routing and security policy – very common in SOHO (DSL/cable) routers
 - Must support what usually router AND firewall do
Firewalls L4 issues

• FTP
 – Complex: PORT, LPRT, EPRT, PSV, EPSV, LPSV (RFC 1639, RFC 2428)
 – Virtually no support in IPv6 firewalls

• HTTP seems to be the next generation file transfer protocol with WEBDAV and DELTA

• Other non trivially proxy-able protocol:
 – No support (e.g.: H.323)
Firewall setup

- No blind ICMPv6 filtering possible:

<table>
<thead>
<tr>
<th>IPv6 specific</th>
<th>IPv6 specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echo request/reply</td>
<td>Debug</td>
</tr>
<tr>
<td>No route to destination</td>
<td>Debug – better error indication</td>
</tr>
<tr>
<td>TTL exceeded</td>
<td>Error report</td>
</tr>
<tr>
<td>Parameter problem</td>
<td>Error report</td>
</tr>
<tr>
<td>NS/NA</td>
<td>Required for normal operation – except static ND entry</td>
</tr>
<tr>
<td>RS/RA</td>
<td>For Stateless Address Autoconfiguration</td>
</tr>
<tr>
<td>Packet too big</td>
<td>Path MTU discovery</td>
</tr>
<tr>
<td>MLD</td>
<td>Requirements in for multicast in architecture 1</td>
</tr>
</tbody>
</table>
Firewall setup 2

- No blind IP options (→ extension Header) filtering possible:

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop-by-hop header</td>
<td>What to do with jumbograms or router alert option? – probably log and discard – what about multicast join messages?</td>
</tr>
<tr>
<td>Routing header</td>
<td>Source routing – in IPv4 it is considered harmful, but required for IPv6 mobility – log and discard if you don’t support MIPv6, otherwise enable only Type 2 routing header for Home Agent of MIPv6</td>
</tr>
<tr>
<td>ESP header</td>
<td>Process according to the security policy</td>
</tr>
<tr>
<td>AH header</td>
<td>Process according to the security policy</td>
</tr>
<tr>
<td>Fragment header</td>
<td>All but last fragments should be bigger than 1280 octets</td>
</tr>
</tbody>
</table>
Security: VPNs

- Layer 2 solutions
 - MPLS
- **IPSec**urity
 - IPSec - Suite of protocols
- Other solutions
 - E.g. OpenVPN, Tinc, yavipin
Security: IPSec

- General IP Security mechanisms
 - From the IETF IPsec Working Group
 - IP Security Architecture: RFC 4301
- Applies to both IPv4 and IPv6:
 - **Mandatory for IPv6**
 - Optional for IPv4
- Applicable to use over LANs, across public & private WANs, & for the Internet
- IPSec is a security framework
 - Provides suit of security protocols
 - Secures a pair of communicating entities
IPsec protocol overview

• IPsec services
 – Authentication
 • AH (Authentication Header - RFC 4302)
 – Confidentiality
 • ESP (Encapsulating Security Payload - RFC 4303)
 – Replay protection, Integrity
 – Key management
 • IKEv2 (Internet Key Exchange - RFC4306)

• Implementations
 – Linux-kernel (USAGI), Cisco IOS-12.4(4)T, BSD&OSX(Kame)
Summary

- IPv6 has potential to be a foundation of a more secure Internet
- Elements of the IPv6 security infrastructure
 - Firewalls, IPSec, AAA, etc.
 are mature enough to be deployed in production environment.
- Other elements are in prototype state
 - CGA, SEND, PANA, VPNs

But even these are ready for experimental deployment