IPv6 Associated Protocols

Miguel Baptista – miguel.baptista@fccn.pt
New Protocols

- Neighbor Discovery (ND) (RFC 2461 DS)
- Auto-configuration:
 - Stateless Address Auto-configuration (RFC 2462 DS)
 - DHCPv6: Dynamic Host Configuration Protocol for IPv6 (RFC 3315 PS)
- Path MTU discovery (pMTU) (RFC 1981 PS)
New Protocols (2)

- **MLD (Multicast Listener Discovery) (RFC 2710)**
 - Multicast group management over an IPv6 link
 - Based on IGMPv2
 - MLDv2 (equivalent to IGMPv3 in IPv4)

- **ICMPv6 (RFC 2463 DS) "Super" Protocol that**:
 - Covers ICMP (v4) features (Error control, Administration,…)
 - Transports ND messages
 - Transports MLD messages (Queries, Reports, …)
Neighbor Discovery

- IPv6 nodes which share the same physical medium (link) use Neighbor Discovery (NDP) to:
 - discover their mutual presence
 - determine link-layer addresses of their neighbors
 - find routers
 - maintain neighbors’ reachability information (NUD)
 - ND uses multicast for certain services.
Neighbor Discovery (2): Comparison with IPv4

- It is the synthesis of:
 - ARP
 - Router Discovery
 - ICMP redirect
 - ...

WALC 2006 (Quito, Ecuador – 26-28 July ’06)
Neighbor Discovery (3)

- Protocol features:
 - Router discovery
 - Prefix(es) discovery
 - Parameters discovery (link MTU, Max Hop Limit, ...)
 - Address auto-configuration
 - Address resolution
 - Next Hop determination
 - Neighbor Unreachability Detection
 - Duplicate Address Detection
 - Redirect
Neighbor Discovery (4)

- ND specifies 5 types of ICMPv6 packets:
 - Router Advertisement (RA):
 - periodic advertisement (of the availability of a router) which contains:
 - list of prefixes used on the link (autoconf)
 - a possible value for Max Hop Limit (TTL of IPv4)
 - value of MTU
 - Router Solicitation (RS):
 - the host needs RA immediately (at boot time)
Neighbor Discovery (5)

• Neighbor Solicitation (NS):
 - to determine the link-layer of a neighbor
 - or to check its impeachability
 - also used to detect duplicate addresses (DAD)

• Neighbor Advertisement (NA):
 - answer to a NS packet
 - to advertise the change of physical address

• Redirect :
 - Used by a router to inform a host of a better route to a given destination
Path MTU discovery (RFC 1981)

- Derived from RFC 1191, (IPv4 version of the protocol)
- **Path**: set of links followed by an IPv6 packet between source and destination
- **link MTU**: maximum packet length (bytes) that can be transmitted on a given link without fragmentation
- **Path MTU** (or pMTU) = \(\min \{ \text{link MTUs} \} \) for a given path
- **Path MTU Discovery** = automatic pMTU discovery for a given path
Path MTU discovery (2)

- Protocol operation
 - makes assumption that pMTU = link MTU to reach a neighbor (first hop)
 - if there is an intermediate router such that link MTU < pMTU \(\Rightarrow \) it sends an ICMPv6 message: "Packet size Too Large"
 - source reduces pMTU by using information found in the ICMPv6 message

\[\Rightarrow \] Intermediate network element aren’t allowed to perform packet fragmentation