IPv6 network management
IPv6 workshop – WALC 2006

Simon.Muyal@renater.fr
Contributions

• Simon Muyal, RENATER
• Bernard Tuy, RENATER
• Jérôme Durand, RENATER
• Ralf Wolter, Cisco
• Patrick Grossetête, Cisco
• Munecika Sumikawa, Hitachi
• Patrick Paul, 6WIND
Agenda

• Introduction

• Retrieving information from routers
 – TELNET/SSH/TFTP/FTP…
 – SNMP/MIBs and IPv6
 – Netflow

• Management platforms

• Management tools
 – 6NET work
 – Recommendations (LAN, WAN…)
 – Examples

• Conclusion & Demo
Introduction

- IPv6 networks deployed:
 - Most are dual stack
 - LANs (campuses, companies, …)
 - MANs
 - WANs - ISPs (Géant, NRENs, IIJ, NTT/Verio, Abilene, …)
 - IX’s

- Testbed, pilot networks, production networks
 - Management tools/procedures are needed

- What applications are available for managing these networks?
 - Equipment, configurations, …
 - **IP services** (servers: DNS, FTP, HTTP, …)
Introduction

• Different types of networks
 – Dual stack IPv6 & IPv4 networks
 – IPv6 only networks (few of them)

• Important to keep in mind
 – Dual stack is not for ever
 – One IP stack should be removed… one day
 – No reasons for network admins to face twice the amount of work
Dual Stack IP networks

• Part of the monitoring via IPv4
 – Connectivity to the equipment
 – Tools to manage it (inventory, configurations, «counters», routing info, …)

• Remaining Part needs IPv6
 – MIBs IPv6 support
 – NetFlow (v9)
IPv6 only networks

• Topology discovery (LAN, WAN ?)
• IPv6 SNMP agent
• SNMP over IPv6 transport

=> Need to identify the missing parts
SSH/TELNET/TFTP…

Basic requirements to manage a network
All routers support IPv6 connections (SSH, TELNET)
- Periodic scripts can retrieve information from the routers over IPv6

TFTP/IPv6 as well supported on every equipment
- Images can be downloaded over IPv6

FTP/IPv6 not supported on CISCO routers
SNMP/MIBs and IPv6

- SNMP and IPv6
- IPv6 MIBs status
- Manufacturers implementations
IPv6 information in MIBs can be transported over IPv4 or IPv6
SNMP over IPv6

- **Cisco:**
 - SNMP over IPv6 is available in 12.0(27)S and 12.3(14)T
 - IOS 12.4 & 12.4T too
 - More features available from 12.0(30)S

- **Juniper, Hitachi, 6wind:**
 - SNMP over IPv6 is available
IPv6 MIBs Status
IPv6 MIBs /2

- Standardization status at IETF:
 - At the beginning:
 * IPv4 and IPv6 MIBs dissociated

<table>
<thead>
<tr>
<th></th>
<th>IPv4</th>
<th>IPv6</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textual Conventions</td>
<td>RFC1902</td>
<td>RFC2465</td>
<td>Definition of IP address format</td>
</tr>
<tr>
<td>IP MIB</td>
<td>RFC2011</td>
<td>RFC2466</td>
<td></td>
</tr>
<tr>
<td>ICMP MIB</td>
<td>RFC2012</td>
<td>RFC2452</td>
<td></td>
</tr>
<tr>
<td>TCP MIB</td>
<td>RFC2013</td>
<td>RFC2454</td>
<td></td>
</tr>
<tr>
<td>UDP MIB</td>
<td>RFC2013</td>
<td>RFC2454</td>
<td></td>
</tr>
</tbody>
</table>
IPv6 MIBs /3

- RFC 1902
 IPv4: ipAddress
 OCTET STRING(SIZE(4))

- RFC 2465
 IPv6: ip6Address
 OCTET STRING(SIZE(16))

- RFC 2851
 IP: { inetAddressType, inetAddress } { INTEGER, OCTET STRING(SIZE(0..255)) }

- RFC 3291

- RFC 4001
 feb 2005

Time:
- nov 1996
- 1998
- june 2000
- may 2002
- feb 2005

Quito, July 2006
IPv6 MIBs /4

- Standardization status at IETF
 - Today: **unified MIBs** are on standard track.
IETF MIB Status /6

- **BGP MIB v6:**
 - draft-ietf-idr-bgp4-mibv2-05.txt (07/2005)
 - Expired

Note that the same people are working on
 - \(\Rightarrow \) RFC 4273
 - *This draft consider only IPv4 addresses:*
 - « IMPORTS IpAddress » \(\Rightarrow\) 32 bits
IPv6 MIBs implementations
IPv6 MIBs implementation/1

- Cisco
 - Private Cisco MIBs implement RFC 2011 (IP) & 2096 (Forwarding) updated drafts
 - Work on implementing the new standards
 - No distinction between IPv4 and IPv6 traffic at the interface level from the MIBs (available when new IETF MIB get implemented)
 - Information available from CLI
 - show interface accounting
 - ...

Quito, July 2006
Cisco: IPv6 CLI

“show interface accounting”

- Differentiate IPv4/IPv6 counters at the interface level for all Cisco routers, except for:
 - Catalyst 6500 / Cisco 7600 supervisor engine 720:
 Counts only for packets that are software switched, not the hardware switched packets.
 - GSR:
 - `show interface counters` correctly counts IPv6 traffic and separates ingress and egress traffic
 - **Engine 3**:
 * OUTPUT IPv6 traffic is counted under IPv6 (correct)
 * INPUT IPv6 traffic is counted under IP (will get corrected)
IPv6 MIBs implementation/2

- Juniper
 - MIB based on (old) RFC 2465
 - with different counters for IPv4 and IPv6 traffic
 - Or based on filters to collect IPv6 traffic:
 - Ex: Geant monitoring

=> Expected: unified MIBs implementation
IPv6 MIBs implementation/3

• Hitachi
 – Routers (GR2000/GR4000) and Switches (GS4000) support IPv6 standard MIBs:
 • RFC 2452: TCP/IPv6
 • RFC 2454: UDP/IPv6
 • RFC 2465: IPv6
 • RFC 2466: ICMPv6
 – The unified MIBs are not implemented yet.
IPv6 MIBs implementation

- 6WIND
 - MIBs based on RFC 2465 and RFC 2466
 - Checked at our lab.
 - Unified MIBs?
IPv6 MIBs implementation/5

- Net-SNMP (Carnegie Mellon Univ)
 - http://net-snmp.sourceforge.net/
 - IPv6 support from version 5.0
 - RFC 2452: TCP/IPv6
 - RFC 2454: UDP/IPv6
 - RFC 2465: IPv6
 - RFC 2466: ICMPv6
 - RFC 3291: (new) textual convention for representing Internet Addresses
IPv6 flow monitoring
Netflow & IPFIX model

Flow = set of packets belonging to the same application between a Source/Destination couple
NetFlow for IPv6

IPv4/v6 Traffic

NetFlow for IPv6 Enabled Device

Core

Applications:
• Performance
• Security
• Billing
• ...

NetFlow Collector

NetFlow Export Packets
1. Templates
2. Data Records

• Source Address
• Destination Address
• Source Port
• Destination Port
• Layer 3 Protocol Type
• DSCP
• Input Logical Interface
• BGP next hop TOS
• MPLS label
• MPLS label type (LDP, BGP, VPN, ATOM, TE Tunnel MID-PT)

IPv6 Distribution and Exploitation

Quito, July 2006
NetFlow Version 9

Packet

Template Definition (Template FlowSet)

ID = 0 Length Template Definition

Flow Records (Data FlowSet)

Tpl ID Length Record Record Record

Record

Field #1

...
NetFlow Version 9

Example for Template Definition

<table>
<thead>
<tr>
<th>Template A</th>
<th>Template B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Set ID (0 for Template)</td>
<td>Flow Set ID (0 for Template)</td>
</tr>
<tr>
<td>Length of Template Structure</td>
<td>Length of Template Structure</td>
</tr>
<tr>
<td>1001 (Template ID)</td>
<td>1002 (Template ID)</td>
</tr>
<tr>
<td>3 (# of Fields)</td>
<td>4 (# of Fields)</td>
</tr>
<tr>
<td>SRC_AS_NUMBER</td>
<td>SRC_IP_PREFIX</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>DST_AS_NUMBER</td>
<td>SRC_AS_NUMBER</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L4_PROTOCOL</td>
<td>PACKET_COUNT</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>BYTE_COUNT</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Example for Export Packet

Packet Header

<table>
<thead>
<tr>
<th>Template B</th>
<th>Template ID for Template B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Number of Records for Template B

- **Record 1**
 - 1.1.1.1
 - 20
 - 365
 - 92894

- **Record 2**
 - 2.2.1.1
 - 64
 - 20
 - 1000

Data for Template B

<table>
<thead>
<tr>
<th>1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

Data for Template A

<table>
<thead>
<tr>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
</tr>
</tbody>
</table>

As defined in the previous slide

Quito, July 2006
IPv6 flow monitoring /1

- Cisco
 - Available in IOS 12.3(7)T and later version
 - IPv6 packets captured (*needs IPv6 CEF*)
 - Export done with *Netflow v9*
 - Still uses *IPv4 transport*
 - Need to update your own Netflow Collector
 - Cisco NFC v5.0 available
 - Other collectors are available as well
 - http://supervision-ipv6.renater.fr/Portail/
 - Netflow v9 collector : Renater’s collector *(Renetcol)*
IPv6 flow monitoring /2

• Hitachi
 – Support Sflow RFC 3176 (http://www.sflow.org/)
 – and Netflow is on the roadmap?

• 6WIND:
 – Not available

• Juniper:
 – Cflowd (#Netflow)
Commercial Management platforms
Commercial platforms

Commercial ISPs use to have integrated management platforms (NRENs mainly use GPL or home-made tools)

- **HP-OV** proposes a version with IPv6 features: NNM 7.0 (sept 2003). Need some hack for automatic IPv6 discovery of CISCO routers.

- **Ciscoworks**: IPv6 version for
 - LMS 2.5 : LAN Management solution
 - Includes a set of functionalities (Campus Manager 4.0, Ciscoview 6.1, …)
 - CNR 6.2 : Cisco Network Registrar (Naming & addressing services)

 Application note on IPv6 management

- **Tivoli Netview** doesn’t propose any IPv6 features

- **Infovista** : « no IPv6 plan at the moment »
Cisco: LMS Application supports IPv6

LMS: LAN Management Solution version 2.5

• Includes:
 – Campus Manager 4.0
 – Resource Manager Essential
 – CiscoView version 6.1
 – Cisco Network Registrar (CNR 6.2)
 – Device Fault Manager
 – Internet Performance Monitor
 – Common services
IPv6 ready

IPv6 not ready

- HP Openview
- Ciscoworks 2000 (LMS 2.5)
- IBM Netview
- Infovista, Tivoli
- ...

« Top ten » …
Monitoring tools
6Net and IPv6 monitoring tools

• 6Net WP6: managing large scale IPv6 networks
 – Tests lots of IPv6 ready tools
 – Many others ported to IPv6

• 30+ monitoring tools for IPv6
 – Tested
 – Implemented
 – Documented

• URL: http://tools.6net.org/
LAN - recommendations

- Traffic & service management (web, DNS, SMTP, IMAP...)
 - A single tool: Argus, Nagios or Ntop
- End-to-end performance of the IPv6 network
 - Iperf or Pchar
- Configuration management
 - Rancid
- Analysis of packets on shared links for occasional troubleshooting
 - Ethereal, tcpdump or Ntop
- IPv6 multicast management
 - Multicast (D)beacon
WAN - recommendations

<table>
<thead>
<tr>
<th>Category</th>
<th>Tools/Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plotting monitoring data</td>
<td>MRTG, Cricket or Nagios</td>
</tr>
<tr>
<td>Equipment and link status:</td>
<td>Intermapper or Nagios</td>
</tr>
<tr>
<td>Routing management:</td>
<td>ASpath-tree (routing policy check)</td>
</tr>
<tr>
<td></td>
<td>Home-made scripts (routing fault management)</td>
</tr>
<tr>
<td>For accounting management:</td>
<td>Ipflow, CISCO NFC v5.0 or Home-made collectors</td>
</tr>
<tr>
<td>Configuration management:</td>
<td>Rancid, Home-made inventory tool</td>
</tr>
<tr>
<td>Looking-glass for customers</td>
<td></td>
</tr>
</tbody>
</table>
Examples
Argus

– Administration of network:
 - PCs, Switches, Routers
 - Availability
 - Traffic on the network

– Administration of services:
 - http, ftp, dns, imap, smtp...

– Evolution: new features can be easily added
Top:Serveurs SIPA

name Serveurs-SIPA
status up

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>data-ipv6_IPV4</td>
<td>Ping</td>
</tr>
<tr>
<td>data-ipv6_IPV6</td>
<td>Ping</td>
</tr>
<tr>
<td>sem2_IPV4</td>
<td>Ping</td>
</tr>
<tr>
<td>sem2_IPV6</td>
<td>Ping</td>
</tr>
</tbody>
</table>

Status: up since Thu 11 Nov 20:59:44 2004

<table>
<thead>
<tr>
<th>Start</th>
<th>Elapsed Time</th>
<th>% Up</th>
<th>% Down Time</th>
<th>Downtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today</td>
<td>00:00:00</td>
<td>100.0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>Yesterday</td>
<td>00:00:00</td>
<td>100.0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>2 Days Ago</td>
<td>00:00:00</td>
<td>100.0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>This Month</td>
<td>21:42:49</td>
<td>98.28</td>
<td>1.72</td>
<td>1</td>
</tr>
<tr>
<td>Last Month</td>
<td>01:00:00</td>
<td>99.97</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>2 Months Ago</td>
<td>01:00:00</td>
<td>100.0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>This Year</td>
<td>10:22:41</td>
<td>99.46</td>
<td>0.54</td>
<td>3</td>
</tr>
</tbody>
</table>

Thu 11 Nov 20:59:44 2004 up TRANSITION - data-ipv6_IPV4
Thu 11 Nov 12:08:57 2004 down TRANSITION - data-ipv6_IPV4
Wed 13 Oct 17:02:33 2004 down TRANSITION - data-ipv6_IPV4
Mon 13 Sep 11:28:39 2004 up TRANSITION - sem2_IPV4
Nagios

- http://www.nagios.org
- Very complete tool
 - Services monitoring
 - Network monitoring
- Can be complex for a small network
- Evolution: new features can be added with plug-ins
 - BGP monitoring
 - ...

Quito, July 2006
Nagios

Current Network Status
Last Updated: Thu Jan 6 09:33:35 CET 2004
Updated every 90 seconds
Nagios® - www.nagios.org
Logged in as?

View: Service Status Detail For All Host Groups
View: Status Overview For All Host Groups
View: Status Summary For All Host Groups
View: Status Grid For All Host Groups

Host Status Totals
Up: 1
Down: 0
Unreachable: 0
Pending: 0

Service Status Totals
Ok: 1
Warning: 1
Unknown: 3
Critical: 0

All Problems: 4
All Types: 5

Host Status Details For All Host Groups

<table>
<thead>
<tr>
<th>Host</th>
<th>Status</th>
<th>Last Check</th>
<th>Duration</th>
<th>Status Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>date-inv</td>
<td>DOWN</td>
<td>00-12-2003 12:28:43</td>
<td>148d 21h 56m 44s</td>
<td>/bin/ping -b -W 2 -c 1 192.168.156.67</td>
</tr>
<tr>
<td>somo2</td>
<td>UP</td>
<td>08-12-2003 15:27:43</td>
<td>148d 21h 55m 22s</td>
<td>(Host assumed to be up)</td>
</tr>
</tbody>
</table>

2 Matching Host Entries Displayed
ASpath-Tree

- Display BGP4+ « topology » from
 - BGP4+ routing table
 - Retrieved from connection to routers (RSH/SSH…)

- Generate HTML pages.
ASpath-Tree

Renater The whole IPv6 BGP table
Looking Glass

- Get information on a router w/o direct connection
- Web Interface
- Final user don’t need a login
- Allows the user to detect causes of failures w/o asking the NOC or netadmin
Looking Glass

RENATER Looking Glass

BGP tables
- show bgp IPv6
 - routing_table
 - summary
 - neighbors

BGP with regular expression
- show bgp IPv6 [regexp]
 - regular expression:
 - Don't use the character "$"

IPv6 traffic
- IPv6 interface
- IPv6 tunnels
- IPv6 neighbors
- IPv6 route

Router: Toulouse
- submit
- Reset

IPv6 address
IPv6 address
name address IPv4
name address IPv6

Quito, July 2006
Inventory: interfaces & peerings

GIP RENATER

WEB, PHP Server

DB server

MySQL

SNMP collector

FTP

SSH

MySql

SNMP Polling

RENATER 3

NOC RENATER

Perl cron job
Inventory: Interfaces
Inventory: BGP Peerings
IPv6 traffic on Cisco routers

• Based on CLI program
 – "show interface accounting"
 – Differentiate IPv4/IPv6 counters at the physical interface level

• One query per hour
 → IPv6 Weather Map of RENATER
IPv6 traffic on Cisco routers
Conclusion

• ISPs –and any other organizations- need monitoring tools to launch a new service/protocol into production
• Most of management protocols are on standard track
• Lots of monitoring tools are now ready for IPv6 networks
• But :
 – Q1: are my usual tools (used for IPv4 monitoring) available for IPv6 too ?
 – Q2: what do I need to stress to my favourite vendor to be ready and manage my IPv6 network ?
Retrieve this information …

- http://www.renater.fr > users > training courses
 ---> Presentations
- http://www.renater.fr > research & innovation > bibliographie
 ---> Bibliography, RFCs, …